cheila.barbosa@cologcoprodutos.com Tel.: (31) 986330668 / (31) 985641687

Relatório de Assessoria Técnica

Análise técnica de variadas areias de mineração

Material Amostrado:	Areia de Mineração de diversas minas, Areia Artificial de Gnaisse e Areia Natural de Rio.
Referência do Relatório:	07/2023
Data da Emissão do Relatório:	14/07/2023
Equipe:	Colog : Cheila Barbosa, Luciano Bento e Mariana Menezes.
•	ConsultareLabcon: Aline Alves, Marcelo Fonseca, Guilherme Reis, Rubens Pedrosa, Jonatans Silva, Rafael Gomes de Souza e José Rodrigues.

1. INTRODUÇÃO

A areia de mineração é comercializada atualmente nos estados de Minas Gerais, Espírito Santo e São Paulo, sendo utilizada parcialmente como agregado miúdo nos traços de argamassa, artefatos cimentícios e concreto. Com a possibilidade de produção e comercialização de novas areias em diversas minas de minério de ferro no estado de Minas Gerais, foram desenvolvidas dosagens de concreto com as variadas areias de mineração e as areias presentes no mercado industrial da região de Belo Horizonte.

2. OBJETIVO

O objetivo do presente trabalho foi desenvolver dosagens de concreto para produção industrial, utilizando as areias de mineração e as areias normalmente utilizadas na região de Belo Horizonte, para análise de desempenho técnico e qualitativo na produção de concreto usinado.

3. DATA DE EXECUÇÃO DOS ESTUDOS

Início: 21/03/2023

Término: 21/06/2023

Diretoria Comercial & Desenvolvimento de Produtos Eng. Luciano Bento Eng. Cheila Barbosa luciano.bento@cologcoprodutos.com cheila.barbosa@cologcoprodutos.com

Tel.: (31) 986330668 / (31) 985641687

4. MATERIAIS E MÉTODOS

4.1. Materiais

Os materiais que normalmente são utilizados na produção de concreto usinado foram coletados diretamente com os fornecedores e as areias de mineração foram coletas nas minas onde ocorre a produção das mesmas. Após coleta, os materiais foram enviados para laboratório onde foi feita a caracterização dos agregados com os ensaios de massa específica, absorção de água, granulometria e material pulverulento. As dosagens de concreto foram executas com cimento Portland CP-V ARI RS (aglomerante), areia (agregado miúdo), brita (agregado graúdo) e aditivo plastificante polifuncional (aditivo redutor de água tipo 1 – RA1). O quantitativo e a procedência dos materiais utilizados no presente estudo estão listados na Tabela 1.

Tabela 1 - Materiais utilizados, procedência e quantidade.

Materiais	Procedência	Unidade	Quantidade
Cimento CP-V ARI RS	Cimento Nacional – Sete Lagoas	kg	500,0
Brita Gnaisse 0	Martins Lanna	kg	400,0
Brita Gnaisse 1	Martins Lanna	kg	800,0
Areia Artificial Gnaisse	Martins Lanna	kg	500,0
Areia A1BR *	Vale/Colog	kg	200,0
Areia Jigue *	Vale/Colog	kg	200,0
Areia Monjolos *	Vale/Colog	kg	150,0
Areia Vale das Cobras *	Vale/Colog	kg	150,0
Areia Liheng *	Vale/Colog	kg	150,0
Areia Cauê *	Vale/Colog	kg	150,0
Areia Natural de rio	Rio Paraopeba	kg	150,0
Aditivo Muraplast FK 384	MC Bauchemie	litros	5,0

^{*} Areia de Mineração

A Figura 1 ilustra todas as areias de mineração que foram usadas no teste. A Figura 2 indica as areias complementares utilizadas (artificial e natural) e a Figura 3 é referente aos agregados graúdos. Por fim, a Figura 4 indica o aglomerante e o aditivo.

A1BR Jigue Monjolos

Vale das Cobras Liheng Cauê

Figura 1 - Areias de Mineração.

Figura 2 - Areias complementares.

Brita Gnaisse 0

Brita Gnaisse 1

Figura 3 - Agregados graúdos.

CP-V ARI RS

Muraplast FK 384

Figura 4 - Aglomerante e aditivo.

4.1.1. Aglomerante

O cimento Portland utilizado foi o CP-V ARI RS. A Tabela 2 apresenta algumas propriedades do aglomerante utilizado e os respectivos limites estabelecidos por norma.

Tabela 2 - Caracterização física do cimento CP-V ARI RS utilizado nos testes.

Características e proprieda	ides	Resultados	Limites NBR 16697
Finura – Método de Blaine (d	cm²/g)	4187	Não aplicável
Início de Pega (min.)		197	>= 60
Fim de Pega (min.)		257	<= 600
	1 dia	21,5	>= 14
Resistência à Compressão	3 dias	32,7	>= 24
(MPa)	7 dias	41,1	>= 34
	28 dias	50,7	Não aplicável

cheila.barbosa@cologcoprodutos.com Tel.: (31) 986330668 / (31) 985641687

4.1.2. Agregados - Composição granulométrica

As características físicas dos agregados encontram-se na Tabela 3 e a curva granulométrica é apresentada nas Figuras 5 e 6. Vale destacar que todas as areias de mineração se mostram mais finas que as demais areias, exceto o Jigue, que tem uma composição mista de areia e pedrisco (27% de material retido na peneira 4,8 mm).

Tabela 3 – Análise granulométrica de agregados.

	Ta	bela 3 -	– Análise gr							
			Ро	rcentage	m retida	e acun	านlada (%	6)		
Peneiras (mm)	A1BR	Jigue	Monjolos	V. Cobras	Liheng	Cauê	Natural de rio	Artificial gnaisse	Brita 0	Brita 1
25										
19										11,0
12,5										80,0
9,5									26,0	97,0
6,3		13							76,0	100,0
4,8		27,0							90,0	100,0
2,4		50,0						14,0	98,0	100,0
1,2	1,0	67,0		1,0		1,0	3,0	37,0	99,0	100,0
0,6	4,0	76,0	11,0	8,0	1,0	2,0	34,0	54,0	100,0	100,0
0,3	11,0	80,0	34,0	32,0	9,0	3,0	84,0	65,0	100,0	100,0
0,15	40,0	89,0	73,0	70,0	56,0	22,0	96,0	77,0	100,0	100,0
Fundo	100,0	100	100,0	100,0	100,0	100,0	100,0	100	100,0	100,0
Dimensão máxima característica (mm)	0,6	6,3	0,6	0,6	0,6	0,3	2,40	4,8	12,5	25,0
Módulo de finura (%)	0,56	3,89	1,18	1,11	0,63	0,28	2,17	2,47	6,10	7,08
Pulverulento (%)	21,0	6,0	13,60	13,20	6,80	13,80	1,0	13,20	1,0	0,20
Massa específica (g/cm³)	2,78	3,09	3,09	3,13	2,89	2,86	2,63	2,66	2,66	2,68

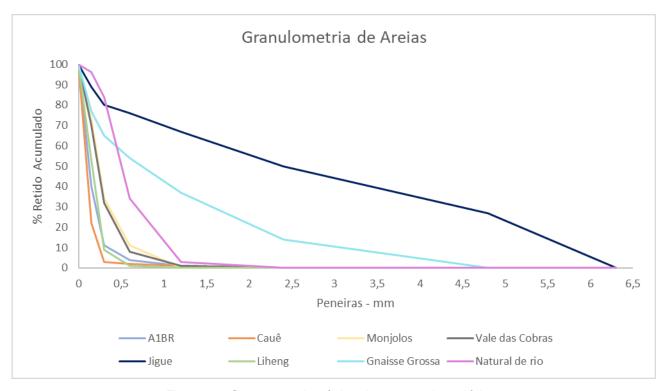


Figura 5 – Curva granulométrica dos agregados miúdos.

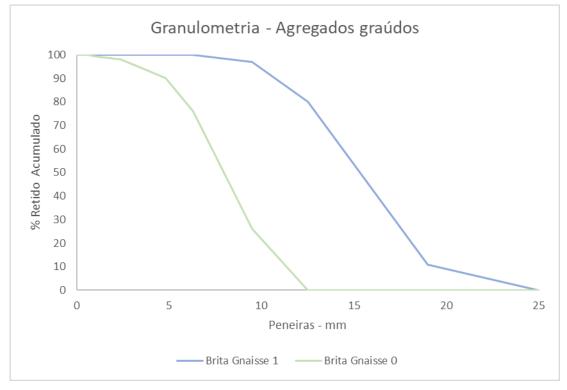


Figura 6 - Curva granulométrica dos agregados graúdos.

Diretoria Comercial & Desenvolvimento de Produtos Eng. Luciano Bento Eng. Cheila Barbosa

luciano.bento@cologcoprodutos.com cheila.barbosa@cologcoprodutos.com Tel.: (31) 986330668 / (31) 985641687

4.1.3. Aditivo

O aditivo utilizado no estudo confere plasticidade, trabalhabilidade, manutenção da plasticidade e redução de água nas dosagens de concreto. As características físicas e químicas obtidas na ficha técnica do produto estão relacionadas na Tabela 4.

Tabela 4 – Propriedades do aditivo.

Propriedades	Resultados
Aspecto	Líquido
Cor	Marrom
Densidade a 25°C	1,08 kg/L
рН	7,0

4.1.4. Água

A água utilizada para confecção das argamassas foi procedente da Companhia de Saneamento de Minas Gerais (COPASA).

4.2. Métodos

Inicialmente, foram definidas as mesclas e composições de agregados graúdos e miúdos que seriam utilizados nas dosagens dos concretos. Para o cálculo das dosagens foi feita a análise dos ensaios de todos os materiais estudados e definidas as mesclas de materiais, teor de argamassa de cada traço e a demanda de água.

Após essa análise foram rodadodos em laboratório alguns traços iniciais para verificação visual do estado fresco dos concretos e possíveis ajustes para melhoria de desempenho e aplicação.

Por fim, com os devidos ajustes, foi possível determinar a demanda de água e argamassa de cada concreto a ser executado. Como premissa, foi definido o slump 14 cm para todos os traços e um lançamento bombeável, ou seja, para tal aplicação e abatimento, o traço tem um teor de argamassa mais alto, deve ser coeso, não apresentar desagregação/segregação e de boa trabalhabilidade.

Com todos os parâmetros definidos, foram executadas as Curvas de Abrams para verificar a resistência e desempenho de cada dosagem. A Curva de Abrams é uma relação entre a resistência do concreto com o fator água/cimento (A/C); quanto menor for o A/C, maior será a resistência do concreto.

Na execução das curvas foram rodados 4 traços para as variadas mesclas de areias com

cheila.barbosa@cologcoprodutos.com Tel.: (31) 986330668 / (31) 985641687

A/Cs diferentes: 0,450 / 0,600 / 0,750 e 0,900. Com os A/Cs espaçados (baixo, intermediário e alto) foi possível construir as curvas de abrams de forma mais precisa. Para todos os A/Cs foram moldados corpos de prova para ensaio de resistência à compressão nas idades de 3, 7, 14 e 28 dias.

Com todas as curvas finalizadas e os resultados disponíveis, foi possível desenhar as curvas de Abrams e fazer a análise de todo o estudo para verificar quais curvas tiveram melhor desempenho no quesito resistência, demanda de água e consumo de cimento para as variadas resistências que são utilizadas na construção civil.

4.2.1. Dosagens de concretos

As dosagens dos concretos tiveram início com a análise dos agregados no intuito de definir a melhor proporção entre as areias e as britas na composição dos traços, que proporcionariam um melhor empacotamento das partículas dos materiais, conferindo aos traços um menor índice de vazios, coesão, trabalhabilidade e plasticidade adequadas.

Para os traças em que seria utilizada a areia de Jigue foi utilizada somente a brita 1, visto que o Jigue tem em sua composição granulométrica 27% de material retido na peneira 4,8 mm (pedrisco). Para os demais traços foi utilizada a proporção de 85% de brita 1 e 15% de brita 0. A dosagem do aditivo polifuncional foi de 0,85% sobre o peso do aglomerante. As mesclas definidas, dosagens executas e quantitativo de materiais estão apresentadas nas Tabelas 5 a 11. Houve variação dos A/Cs devido a demanda de água diferente para cada traço.

Tabela 5 - Dosagem 60% Jigue + 40% A1BR.

Mescla	A/C	CPV	Água	Aditivo	Jigue	A1BR	Brita 1
Moodia	740	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³
60%	0,483	448	217	3,811	527	352	922
Jigue +	0,595	342	204	2,906	601	400	937
40%	0,732	274	201	2,333	641	428	941
A1BR	0,893	228	203	1,937	665	443	938

luciano.bento@cologcoprodutos.com cheila.barbosa@cologcoprodutos.com Tel.: (31) 986330668 / (31) 985641687

Tabela 6 – Dosagem 60% Jigue + 40% Monjolos.

Mescla	A/C	CPV	Água	Aditivo	Jigue	Monjolos	Brita 1
moodia	7,00	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³
60%	0,468	441	206	3,748	597	398	892
Jigue +	0,600	333	200	2,833	668	445	899
40%	0,776	265	205	2,251	702	468	893
Monjolos	0,972	219	213	1,859	722	481	885

Tabela 7 – Dosagem 60% Gnaisse + 40% Vale das Cobras.

Mescla A/C	A/C	CPV	Água	Aditivo	Gnaisse	V. Cobras	Brita 0	Brita 1
Mesola	A	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³
60%	0,476	452	215	3,839	503	336	138	781
Gnaisse +	0,624	340	212	2,889	566	378	138	784
40% Vale	0,774	272	211	2,315	604	403	139	785
das Cobras	0,967	225	218	1,912	623	415	137	778

Tabela 8 – Dosagem 60% Gnaisse + 40% Liheng.

Mescla	A/C	CPV Kg/m³	Água Kg/m³	Aditivo Kg/m³	Gnaisse Kg/m³	Liheng Kg/m³	Brita 0 Kg/m³	Brita 1 Kg/m³
60%	0,471 0,630	453 340	214 214	3,852 2,887	490 549	326 366	138 138	782 782
Gnaisse + 40% Liheng	0,827	269	222	2,285	578	385	137	774
1070 Eliforing	0,947	226	214	1,924	608	405	138	782

Tabela 9 - Dosagem 60% Gnaisse + 40% Natural de Rio.

Mescla	A/C	CPV	Água	Aditivo	Gnaisse	Natural de rio	Brita 0	Brita 1
Mesola	7,0	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³
60%	0,450	458	206	3,891	477	318	139	790
Gnaisse +	0,612	342	209	2,907	533	355	139	209
40% Natural	0,765	274	209	2,325	567	378	139	787
de rio	0,900	229	206	1,946	593	395	139	790

Tabela 10 – Dosagem 60% Gnaisse + 40% Cauê.

Mescla	A/C	CPV	Água	Aditivo	Gnaisse	Cauê	Brita 0	Brita 1
moodia	7,40	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³
60%	0,472	453	214	3,851	448	299	147	835
Gnaisse +	0,654	337	220	2,864	503	336	146	829
40% Cauê	0,781	272	213	2,314	544	363	148	837
1070 0000	0,967	225	218	1,915	564	376	147	831

luciano.bento@cologcoprodutos.com cheila.barbosa@cologcoprodutos.com Tel.: (31) 986330668 / (31) 985641687

Tabela 11 – Dosagem 6	0% Gnaisse +	40% A1BR.
-----------------------	--------------	-----------

Mescla	A/C	CPV	Água	Aditivo	Gnaisse	A1BR	Brita 0	Brita 1
		Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³	Kg/m³
60%	0,480	452	217	3,839	467	311	141	797
Gnaisse + 40% A1BR	0,612	342	209	2,906	530	354	142	805
	0,738	276	203	2,342	570	380	143	811
	0,888	229	204	1,951	593	395	143	810

4.2.2. Execução das Curvas de Abrams

Para iniciar os testes foi feita a preparação dos materiais, com identificação e secagem dos mesmos. Os traços foram calculados conforme já mencionado para cada mescla de areias. Para o estudo, o volume de cada dosagem foi de 25 litros de concreto, preparado em uma betoneira com capacidade de 150 litros (Figura 7).

Figura 7 - Betoneira utilizada nas dosagens de concreto.

Os materiais foram pesados e separados, conforme indica a Figura 8 e as dosagens executadas na sequência, para cada curva de Abrams considerando os 4 A/Cs definidos previamente. Inicialmente a betoneira foi umedecida com água e os agregados adicionados. Posteriormente adicionou-se o cimento e parte da água de amassamento e a betoneira foi ligada para a mistura dos materiais. O aditivo foi adicionado e a mistura ocorreu por um período de 5 minutos para a dosagem inicial. A água de amassamento foi adicionada em partes até se obter o slump de 14 cm.

cheila.barbosa@cologcoprodutos.com Tel.: (31) 986330668 / (31) 985641687

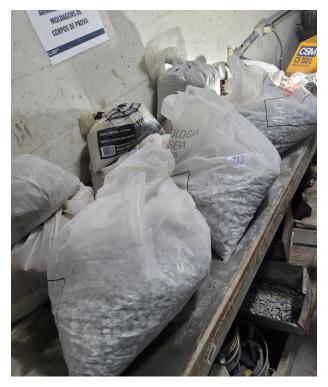


Figura 8 - Traços de concreto pesados e identificados.

Após aferição do slump inicial, pelo ensaio de abatimento do tronco de cone, o concreto continuou o processo de mistura na betoneira para verificação da perda de abatimento, em um período de 15 minutos. Esse procedimento serve para verificar como o concreto está se comportamento ao longo do tempo, se o aditivo está dando a devida manutenção de plasticidade e se é necessário algum ajuste na dosagem do traço do concreto.

Por fim, foi medido o slump após os 15 minutos de mistura e o mesmo foi ajustado para o slump que foi pré-estabelecido em todas as dosagens (14 cm). Caso necessário foi adicionada água além da calculada previamente e o traço foi recalculado com a água adicional. A Figura 9 mostra o estado fresco do concreto de cada curva que foi executada, aferição do slump e avaliação do teor de argamassa das dosagens e sua trabalhabilidade.

Figura 9 – Estado fresco das dosagens de concreto.

Foram moldados corpos de prova para ensaios de resistência à compressão axial nas idades de 3, 7, 14 e 28 dias, conforme ilustram as Figuras 10 e 11. Após 24 horas os corpos de prova foram desformados e armazenados em câmara úmida com umidade e temperatura controladas, em processo de cura até a data dos ensaios de resistência à compressão.

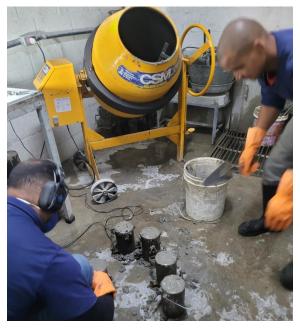


Figura 10 - Moldagem de corpos de prova.

Figura 11 - Corpos de prova de concreto moldados e identificados.

5. APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

Inicialmente, foi feita a análise granulométrica de todas as mesclas de areias e das britas que foram executadas nas dosagens de concreto. As mesclas de areias onde há a presença do jigue e da areia natural ficaram com uma granulometria mais grossa quando comparadas às demais mesclas, conforme Figura 12. As **Erro! Fonte de referência não encontrada.** e 14 indicam os limites e as zonas utilizáveis de granulometrias, dispostas na norma NBR 7211 comparados com todos os agregados usados nesse estudo. Algumas mesclas de areias ficaram foram desses limites e as britas mescladas ficaram próximas do limite superior estabelecido para a zona granulométrica 9,5/25 mm. Conforme ressalta a norma em questão, os agregados com distribuição granulométrica diferentes dos limites estabelecidos podem ser usados desde que estudos prévios de dosagem de concreto comprovem a aplicabilidade dos materiais.

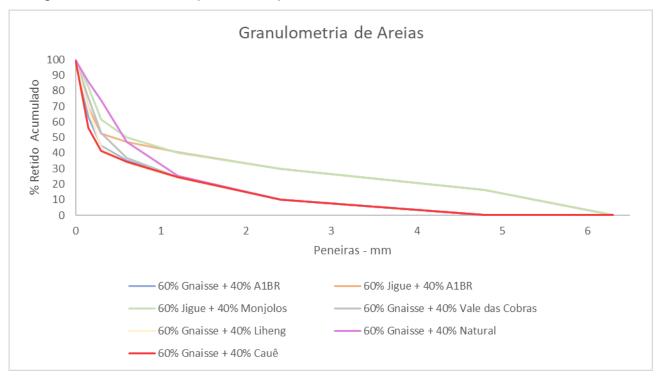


Figura 12 - Granulometrias das areias mescladas.

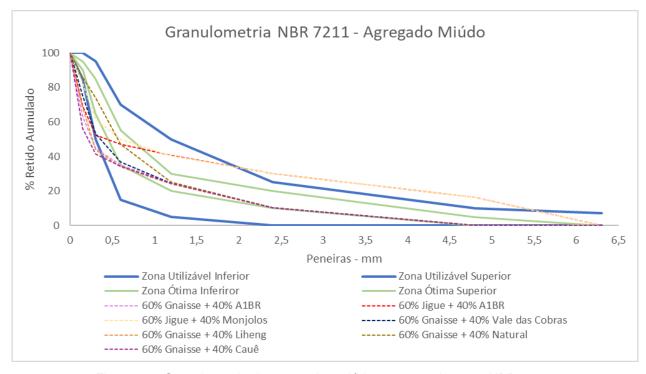


Figura 13 - Granulometria de agregados miúdos comparativa com NBR 7211.

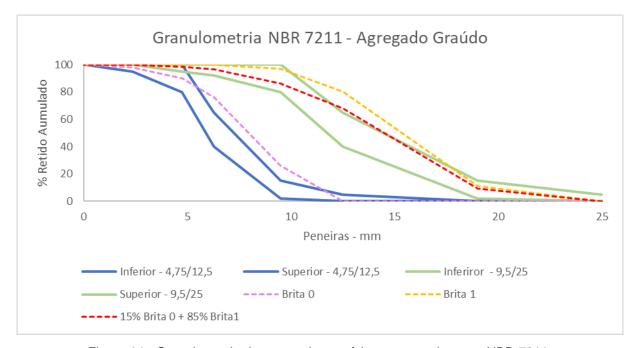


Figura 14 - Granulometria de agregados graúdos comparativa com NBR 7211.

A Tabela 12 mostra o comparativo de todas as curvas executas nesse estudo para as dosagens de concreto no estado fresco. As curvas com uma demanda de água mais alta foram as de 60% Gnaisse + 40% Cauê e 60% Gnaisse + 40% Liheng. As curvas com

cheila.barbosa@cologcoprodutos.com Tel.: (31) 986330668 / (31) 985641687

menor demanda de água foram as curvas com a areia jigue que, conforme ilustra a Figura 12, os agregados mesclados possuem uma granulometria mais grossa que as demais mesclas o que leva a uma demanda de água mais baixa, visto que a área superficial das partículas dos agregados é menor e consequentemente a quantidade de água para envolver as partículas é menor. As curvas com areia Cauê e areia Natural de rio apresentaram teor de ar incorporado mais alto que as demais. A curva com a areia Cauê possui um menor teor de argamassa devido à própria característica do material, que é mais fino e com isso possibilita que a dosagem do concreto tenha uma argamassa mais baixa de forma que sua reologia fique adequada. Já a curva com 60% Jigue + 40% Monjolos foi a que demandou um teor de argamassa mais alto, pois como a granulometria dos agregados miúdos é mais grossa, para uma dosagem adequada e com reologia apropriada, o concreto demanda uma argamassa alta.

Tabela 12 - Curvas de Abrams - comparativo do estado fresco das dosagens.

Curva de Abrams	Média de demanda de água (Litros)	Ar incorporado (%)	Teor de argamassa (%)	Slump final (cm)
60% Jigue + 40% A1BR	206,3	1,6	56,0	14,0
60% Jigue + 40% Monjolos	206,0	2,7	58,0	14,0
60% Gnaisse + 40% Vale das Cobras	214,0	3,9	56,0	14,0
60% Gnaisse + 40% Liheng	216,0	3,2	56,0	14,0
60% Gnaisse + 40% Natural de Rio	207,5	4,4	56,0	14,0
60% Gnaisse + 40% Cauê	216,3	5,1	53,0	14,0
60% Gnaisse + 40% A1BR	208,3	3,9	55,0	14,0

Com os ensaios de resistência à compressão axial finalizados, as curvas de Abrams foram desenhadas a partir das resistências obtidas em cada idade e suas respectivas relações água/cimento. As curvas foram ajustadas pelo método dos mínimos quadrados com o coeficiente de determinação R² acima de 0,98. As Figuras 15, 16 e 17 indicam as curvas desenhadas nas idades de 3, 7 e 28 dias, respectivamente.

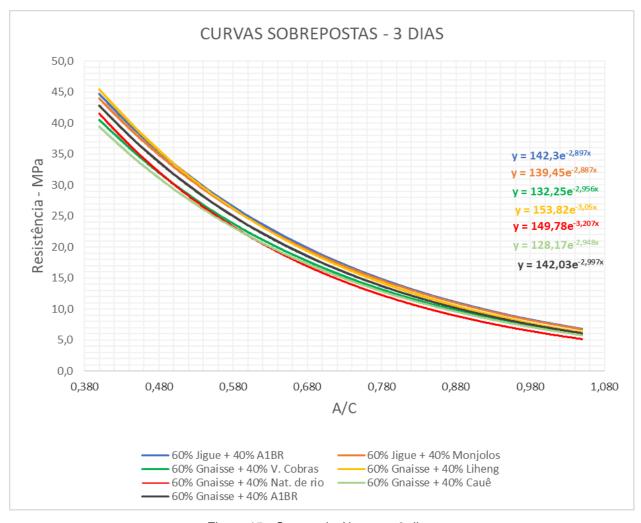


Figura 15 - Curvas de Abrams - 3 dias.

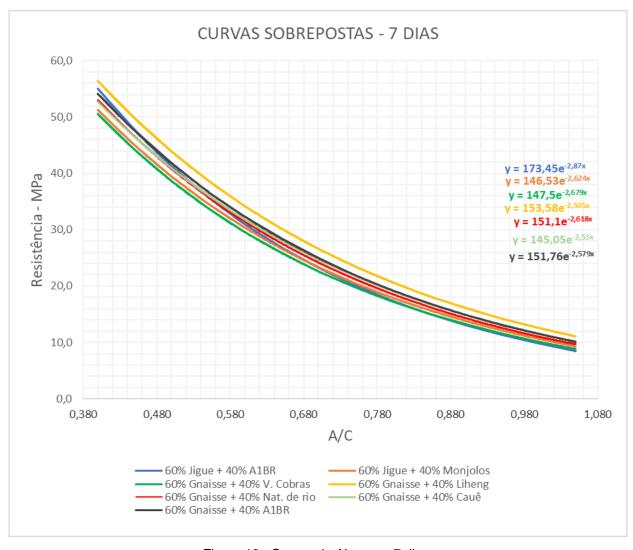


Figura 16 - Curvas de Abrams - 7 dias.

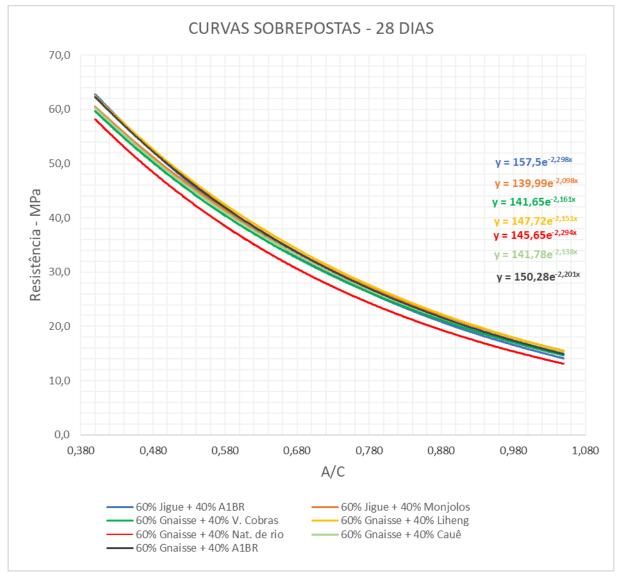


Figura 17 - Curvas de Abrams - 28 dias.

Com as curvas desenhadas foi possível fazer a análise das resistências à compressão aos 28 dias e a análise do crescimento das resistências entre as idades de 7 e 28 dias.

Percebe-se que a curva com mescla de areia 60% gnaisse + 40% natural teve o pior desempenho quando comparada as demais. As curvas onde há a presença das areias de mineração tiveram melhores desempenhos de resistência à compressão, com destaque para as curvas com areia Liheng e areia A1BR.

A Tabela 13 mostra o crescimento médio de resistência entre a idade de 7 e 28 dias de cada curva executada nesse estudo. A curva com areia natural apresentou o pior resultado com apenas 23% de crescimento. As curvas onde há a presença de areia de

cheila.barbosa@cologcoprodutos.com Tel.: (31) 986330668 / (31) 985641687

mineração apresentaram melhores crescimentos, com destaque para as curvas com areia de Jigue e Vale das Cobras. Essas areias possuem um teor de ferro mais alto, quando comparadas com as outras areias de mineração, o que pode ser um indício para uma melhor hidratação das partículas do cimento, juntamente com o aditivo polifuncional utilizado, proporcionando um crescimento elevado.

Tabela 13 - Crescimento de resistência à compressão.

Curva de Abrams	Crescimento médio de resistência entre 7 e 28 dias.
60% Jigue + 40% A1BR	41%
60% Jigue + 40% Monjolos	43%
60% Gnaisse + 40% Vale das Cobras	43%
60% Gnaisse + 40% Liheng	26%
60% Gnaisse + 40% Natural de Rio	23%
60% Gnaisse + 40% Cauê	32%
60% Gnaisse + 40% A1BR	32%

A partir das curvas executadas e da demanda de água para cada mistura, foi possível estimar o consumo de cimento para algumas classes de resistência comumente utilizadas na construção civil. Foi utilizado o desvio de dosagem de 4, conforme ABNT 12655 e equação a seguir:

$$f$$
cmj = f ckj + 1,65 · sd

Onde

fcmj é a resistência média do concreto à compressão, prevista para a idade de j dias, expressa em megapascals (MPa);

fckj é a resistência característica do concreto à compressão, aos j dias, expressa em megapascals (MPa);

sd é o desvio-padrão da dosagem, expresso em megapascals (MPa).

Diretoria Comercial & Desenvolvimento de Produtos Eng. Luciano Bento Eng. Cheila Barbosa luciano.bento@cologcoprodutos.com cheila.barbosa@cologcoprodutos.com

Tel.: (31) 986330668 / (31) 985641687

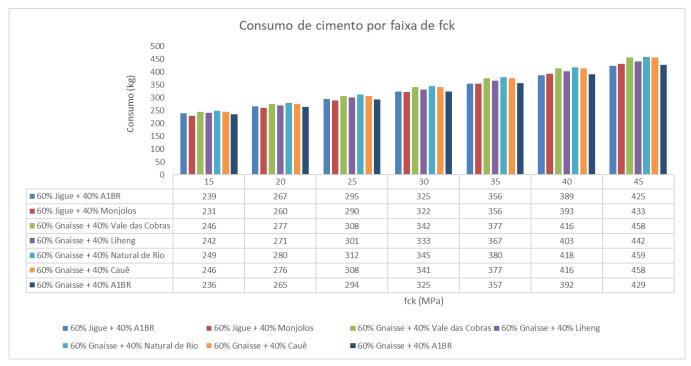


Figura 18 - Consumo de cimento/m³ de concreto produzido para variadas faixas de fck.

Conforme Figura 18 as curvas que apresentaram o menor consumo de cimento para um metro cúbico de concreto produzido, considerando as várias faixas de fck calculadas foram as curvas com a areia de jigue e a curva com 60% gnaisse + 40% A1BR. A curva com o maior consumo de cimento foi a de 60% gnaisse + 40% natural.

6. CONSIDERAÇÕES FINAIS

O presente estudo teve como objetivo avaliar o uso de diversas areias de mineração na produção de concreto para verificar possíveis ganhos de desempenho, trabalhabilidade e redução de custos.

Os resultados apresentados foram satisfatórios e com as curvas de abrams desenvolvidas foi possível verificar que as mesclas executadas com areia de mineração tiveram desempenho superior quando comparadas com a mescla executada com areia natural. Há um destaque para 3 curvas que tiveram desempenhos muito parecidos e superiores às demais curvas executadas: as duas curvas com Jigue e a curva com 60% gnaisse mais 40% A1BR. Essas curvas apresentaram uma redução de até 7% do consumo de cimento, o que representa em média, 24 quilos de cimento a menos na execução dessas dosagens.

Diretoria Comercial & Desenvolvimento de Produtos Eng. Luciano Bento Eng. Cheila Barbosa

luciano.bento@cologcoprodutos.com cheila.barbosa@cologcoprodutos.com Tel.: (31) 986330668 / (31) 985641687

Sabendo-se da importância da sustentabilidade na construção civil, da busca por

materiais de origem controlada, com qualidade e que não degradem o meio ambiente, o

uso da areia de mineração na produção de concreto se mostra eficiente, com ganhos de

desempenho técnico e produtivos, impulsionando uma construção sustentável, com

redução de CO₂ e promoção da economia circular na cadeira construtiva.

7. REFERÊNCIAS

O presente estudo foi baseado nas seguintes normas vigentes:

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - NBR 5735: Cimento

Portland de alto-forno. Rio de Janeiro, 1991.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 45: Agregados –

Determinação da massa unitária e do volume de vazios. Rio de Janeiro, 2006.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 46: Agregados -

Determinação do material fino que passa através da peneira 75 µm, por lavagem. Rio de

Janeiro, 2003.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - NBR NM 52: Agregado

miúdo - Determinação da massa específica e massa específica aparente. Rio de Janeiro,

2009.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 53: Agregado

graúdo - Determinação da massa específica, massa específica aparente e absorção de

água. Rio de Janeiro, 2009.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15900-1: Água para

amassamento de concreto - Parte 1: Requisitos. Rio de Janeiro, 2009.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7211: Agregados para

concreto - Requisitos. Rio de Janeiro, 2022.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 11768-1: Aditivos

químicos para concreto de cimento Portlant - Parte 1: Requisitos. Rio de Janeiro, 2019.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5738: Concreto -

Procedimento para moldagem e cura de corpos de prova. Rio de Janeiro, 2015.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5739: Concreto -

Ensaios de compressão de corpos-de-prova cilíndricos. Rio de Janeiro, 2007.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 67: Concreto -

22/23

Diretoria Comercial & Desenvolvimento de Produtos Eng. Luciano Bento Eng. Cheila Barbosa

luciano.bento@cologcoprodutos.com cheila.barbosa@cologcoprodutos.com

Tel.: (31) 986330668 / (31) 985641687

Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro, 1998.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12821: Preparação de

concreto em laboratório – Procedimento. Rio de Janeiro, 2009.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12655: Concreto de

Cimento Portland - Preparo controle e recebimento - Procedimento. Rio de Janeiro,

2015.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7212: Execução de

concreto dosado em central - Procedimento. Rio de Janeiro, 2021.

Atenciosamente,

Eng. Cheila Barbosa de Souza

Diretoria Comercial &

Desenvolvimento de Produtos

Eng. Luciano dos Reis Bento Diretoria Comercial &

Desenvolvimento de Produtos

Nova Lima - MG, 14 de julho de 2023.

Para maiores esclarecimentos ou continuidade de qualquer item citado neste relatório, favor entrar em contato com a Gerência Comercial e Gerência de Pesquisa e

Desenvolvimento da Co-log.

As recomendações deste trabalho têm aplicação restrita aos materiais estudados e o

controle de qualidade dos produtos é de responsabilidade do fabricante.

Informamos que nos encontramos a disposição para eventuais esclarecimentos.

23/23